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We consider theoretically a dielectric nanoparticle levitated in an optical ring trap inside a cavity and probed by an
angular lattice, with all electromagnetic fields carrying orbital angular momentum. Analyzing the torsional mo-
tion of the particle about the cavity axis, we find that photon scattering from the trap beam plays an important
role in the optomechanical system. First we show that the presence of the torque introduces an instability.
Subsequently, we demonstrate that for bound motion near a stable equilibrium, varying the optical torque
strength allows for tuning the linear optomechanical coupling. Finally, we indicate that the relative strengths
of the linear and quadratic couplings can be detected directly by homodyning the cavity output. Our studies
should be of interest to researchers exploring quantum mechanics using torsional optomechanics. © 2017

Optical Society of America

OCIS codes: (080.4865) Optical vortices; (140.4780) Optical resonators; (260.6042) Singular optics.

https://doi.org/10.1364/JOSAB.34.000C44

1. INTRODUCTION

Levitated systems have lately emerged as exciting platforms for
exploring optomechanical effects such as cooling [1], sensing
[2,3], and matter–wave interferometry [4]. A unique advantage
presented by such systems is their lack of mechanical clamping
to any substrate or support. One consequence of this feature is
excellent isolation from environmental, particularly thermal,
disturbances. Studies of linear mechanical oscillations of opti-
cally levitated particles have been carried out both with [5] and
without [6] cavities. Torsional optomechanics of levitated
particles has also been theoretically proposed [7,8] and exper-
imentally realized [9].

In this paper we consider the torsional optomechanics of a
levitated subwavelength-size dielectric nanoparticle confined in
a ring trap in a cavity and probed by an azimuthal lattice, as
shown in Fig. 1. This configuration was recently proposed as a
rotational analog of linear cavity optomechanics, in the case
where the particle is free to rotate fully about the cavity
axis [10].

In contrast to previous work on torsional optomechanics
[7–9], the oscillations in the proposed configuration are off-
beam axis. All the optical beams in the configuration carry
orbital angular momentum (OAM). As has been shown earlier,
the photons scattered from such beams exert an optical torque
on particles in vacuum [11]. In the present work we show that
depending on the angular location of the particle, this
torque can lead to an instability or enable tunable linear

optomechanical coupling in the system. To support our analy-
sis, we first present a quantum master equation for the physical
configuration of interest. We then consider the ensuing
Langevin equations in the classical limit, which provide quan-
titative details regarding stability and optomechanical coupling.
To conclude, we demonstrate that homodyning the output of
the cavity allows one to measure the amount of linear optome-
chanical coupling present in the system.

2. MODEL OF THE PHYSICAL CONFIGURATION

The configuration of interest is shown in Fig. 1. In this section
we develop the mathematical model corresponding to the physi-
cal system, culminating in the presentation of the quantum
master equation and the ensuing classical Langevin equations.

A. Electric Fields

The net electric field has four contributions:

E � E t � E p � E c � E b; (1)

where Et is the electric field of the trap beam, Ep is the azimu-
thal lattice probe used to excite the cavity mode Ec , and Eb is
the field of all the background modes into which photons
scatter from the nanoparticle. We now describe each of these
fields individually.
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1. Trap Field

The trap field is a Laguerre–Gaussian (LG) beam carrying
OAM l t ,

E t � E0

�
ρ

R

�jl t j
e

�
R2−ρ2

2ω2
0

�il tϕ−iωt t

�
cos

�ωt z
c

�
� c:c:; (2)

where E0 is the field amplitude, ρ is the cylindrical radial co-
ordinate, R � ω0

ffiffiffiffi
l t

p
is the radius at which the field intensity is

a maximum at z � 0, ω0 is the trap beam waist, ϕ is the
cylindrical angular coordinate, ωt is the trap beam frequency,
and c is the speed of light. Here we have ignored the curvature
of the beam wavefront as well as the contribution due to the
Gouy phase.

2. Probe and Cavity Fields

The angular lattice in Fig. 1 arises from a superposition of two
copropagating LG beams with OAM �l , beam waist ω0, and
degenerate frequencies ωc ≠ ωt . The polarizations of the trap
and probe beams will be assumed to be orthogonal, although
we will not assign them explicit polarizations below. For the
moment we consider the probe beam quantum mechanically,

E c �
ffiffiffiffiffiffiffiffi
ℏωc

ϵ0

s
ψ�r�a� h:c:; (3)

where a and a† are the canonical creation and annihilation
operators, respectively, of the cavity mode obeying the commu-
tation rule �a; a†� � 1, with the mode function

ψ�r� � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lcπ2ω2

0jl j!
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ω0
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p
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2ω2
0
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cos�lϕ� cos

�
ωcz
c

�
;

(4)

where Lc is the length of the cavity. The free-field Hamiltonian
of this mode is

Hf
c � ℏωca†a; (5)

where we have dropped a factor of 1∕2 which has no dynamical
significance. The probe is a field defined outside of the cavity

and assumed to be mode-matched to the cavity mode at one of
the mirrors. The energy of this mode is

Hf
p �

Z
∞

0

ℏωpa
†
p�ω�ap�ω�dω; (6)

and its coupling with the cavity field is given by

Hi
cp � iℏ

Z
∞

0

γ�ω��a†ap�ω� − h:c:�dω; (7)

where γ�ω� ≅
ffiffiffiffiffiffiffiffi
κ∕π

p
is the coupling constant in terms of the

cavity decay rate κ [12].

3. Background Fields

The background field is the continuum of modes that the
nanoparticle scatters light into. In the plane wave basis the
electric field is given by [13]

E b � i
X
μ

Z
d3k

�
ℏωk

16π3ε0

�1
2

eμ�k�aμ�k�eik:r � h:c:; (8)

and the free field energy follows as

Hb
f �

X
μ

Z
ℏωka

†
μ�k�aμ�k�d3k; (9)

where the index μ indicates the polarization of the photon.

4. Total Field Hamiltonian

The total field Hamiltonian is

Hf
field � Hf

c �Hf
p �Hi

cp �Hb
f : (10)

B. Mechanical Degrees of Freedom

The Hamiltonian of mechanical motion is

Hf
m � jpj2

2m
� p2ρ

2m
� p2z

2m
� L2

z

2I
; (11)

where m is the mass; pρ and pz are the radial and axial linear
momenta, respectively; and Lz and I � mρ2 ≈ mR2 are the
angular momentum and moment of inertia about the cavity
(i.e., z) axis of the nanoparticle, respectively.

C. Optomechanical Interaction

The dielectric nanoparticle interacts with the total electric field
through the induced dipole interaction given by

Hi
inf � −

1

2

Z
V
P�r� · E�r�d3r ≅ −

ε0εr
2

V jE j2; (12)

where V � 4πr3∕3 is the volume, r is the radius, and εr is the
relative dielectric permittivity of the nanoparticle. A number of
terms arise when Eq. (1) is used in Eq. (12). We will describe
below the terms containing jE t j2, jE c j2, and E t · E b only,
which yield the optical trap, the optomechanical coupling,
and the scattering of photons from the trap beam, respectively.
The remaining terms either vanish identically (due to the
polarization orthogonality of the trap and probe beams) or are
small shifts in position and frequency which we have absorbed
into the appropriate definitions.

For the parameters considered in this paper, photon scatter-
ing from the probe is negligible in comparison to the scattering
from the trap.

M1

M2

R

x

y

z

m

LG2 trapLG 2
lattice

Fig. 1. Torsional optomechanical setup considered in this paper. A
dielectric nanosphere of mass m is trapped on an optical ring of radius
R created by a beam carrying OAM l t � 2 and by an azimuthal lattice
arising from the interference of two degenerate OAM l � �2 beams.
The resulting motion of the particle consists of harmonic oscillations
about the beam axis. Mirrors M 1 and M 2 constitute the cavity.
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1. Optical Trap

Using Eq. (2) in Eq. (12), expanding around the points
qρ � ρ − R � 0 and qz � z � 0, up to second order in the
coordinates, the optical trapping potential is given by

−
ε0εr
2

V jE t j2 �
m
2
�ω2

ρq2ρ � ω2
z q2z �; (13)

with radial and axial trapping frequencies

ωρ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ε0εrE2

0

ρmω
2
0

s
(14)

and

ωz �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0εrE2

0ω
2
t

ρmc2

s
; (15)

respectively, where ρm is the density of the nanoparticle. In this
work, we will thus consider the particle trapped harmonically
along the radial and axial directions and henceforth focus on
the angular motion.

2. Optomechanical Coupling

The optomechanical coupling is found by expanding the cor-
responding term in Eq. (12) to the second order in the particle
coordinates

−
ε0εr
2

V jEcj2 � ℏg l a
†a�Ul � U †

l �; (16)

where the optomechanical coupling is

g l � −
2ωcεrV
Lcπ2ω2

0jl j!
e
−R

2

ω2
0 ; (17)

and an explicitly periodic angular displacement variable

Ul � ei2lϕ (18)

has been used. It can be shown readily that [14]

Ul jmi � jm� 2li; U †
l jmi � jm − 2li; (19)

for angular momentum eigenstates Lz jmi � mℏjmi.
Combining the nanomechanical motion [Eq. (11)] with the

optomechanical coupling [Eq. (16)] yields the Hamiltonian,

HOM � L2
z

2I
ℏgl a

†a�Ul � U †
l �: (20)

We note that the second term on the right-hand side of
Eq. (20) yields a coupling nonlinear in the mechanical coordi-
nate, since Ul � U †

l � 2 cos 2lϕ. As will be shown below, for
small angular displacements and zero torque, this term yields a
coupling quadratic in ϕ, which is then responsible for harmonic
confinement of the nanoparticle. The ensuing frequency of
mechanical oscillation then dynamically depends on the probe
photon number a†a. Also, it will be shown that in the presence
of the torque τ a coupling linear in ϕ can be generated.

D. Optical Scattering from the Trap

1. Scattering Hamiltonian

The Hamiltonian that describes the scattering of trap photons
by the nanoparticle is given by

Hi
inf � −

ε0εr
2

Z
V
E t�r� · E b�r�d3r ≅ −

ε0εr
2

V E t�r� · E b�r�:

(21)

2. Dissipative Lindblad Operator

A long but straightforward calculation assuming a weak cou-
pling to the background modes, fast decay of correlations in
the bath presented by such modes, and employing the Born–
Markov approximation yields using Eq. (21) the scattering
contribution to the master equation [15],

Lsc�ρ� � −
γsc
2

X
m

D�Lm�ρ; (22)

where Lsc is the scattering Liouvillian, ρ is the system density
matrix,

D�L�ρ � fL†L; ρg − 2LρL† (23)

is the dissipation superoperator,

γsc � �εrV �2 7ω3
t

24πℏc4

�
cε0E2

0

2

�
(24)

is the rate of trap photon scattering, and

Lm � αmUmU l (25)

are the Lindblad operators, where

αm � 6

7

Z
1

0

�
1� x2

2

�
J2m

�
ωtRx
c

�
dx; (26)

and Jm is a Bessel function. For realistic parameters we find that
γsc ≪ γ, implying that the optical scattering does not signifi-
cantly affect the cavity finesse.

E. Collisions with Background Gas

We now account for the collisions of the trapped dielectric with
the background gas particles. In view of the analysis presented
below, we restrict ourselves to a model of damping and
decoherence which is valid for semiclassical mechanical states,
that is, those whose coherence lengths are smaller than the ther-
mal de Broglie wavelength. A model which is valid for the nano-
mechanical states in the deep quantum regime can be derived as
well but is more complicated and not relevant to this paper [16].

A simplified model representing the effect of the gas back-
ground is given by

B�ρ� � −
iγm
2ℏ

�ϕ; fLz ; ρg� −
IγmkBT

ℏ2 D�ϕ�ρ; (27)

where γm is the rate of mechanical damping, T is the ambient
temperature, the first term on the right-hand side represents
mechanical damping due to gas collisions, and the second term
represents the corresponding fluctuations. In writing Eq. (27) a
term representing positional diffusion, which is required to en-
sure the positivity of the density matrix ρ, has been omitted as
its effect at the high temperatures considered here is negligible.
We note that since we will be concerned below with small am-
plitudes of torsional motion, the usual problems associated with
ϕ not being an explicitly periodic variable do not arise [17].
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F. Full Master Equation

Combining the elements from the sections presented above, the
full master equation for the probe and nanoparticle angular
motion is given by

_ρ � 1

iℏ
�H; ρ� � Lsc�ρ� � B�ρ�; (28)

where

H � HOM �Hf
field: (29)

G. Classical Langevin Equations

Since our intention is to investigate the system in the classical
limit, using standard methods [18], we derive a set of classical
Langevin equations from Eq. (28). The first equation deter-
mines the time evolution of the (now classical) variable U l :

_U l �
i2lU lLz

I
: (30)

The second equation describes the change in the angular
momentum of the nanoparticle about the beam axis,

_Lz � −γmLz − 2ilℏg l �U l − U 	
l �ja�t�j2 � τ� τin; (31)

where the complex-valued classical variable a�t� is defined such
that ja�t�j2 is the number of probe photons inside the cavity at
time t , and

τ � γsc
2
l tℏ (32)

is the torque induced by scattering of the trap photons by the
nanoparticle. We assume the dielectric is not birefringent, and
thus rotational effects due to trap beam polarization are absent.
The last term in Eq. (31) is a Langevin torque with zero average
obeying the two-time correlation,

hτin�t�τin�t 0�i � 2IγmkBT δ�t − t 0�: (33)

Finally, the third equation prescribes the dynamics of the
cavity mode,

_a �
�
i�Δ 0 −

g l
2
�Ul � U 	

l �� −
γ

2

�
a� ffiffiffi

γ
p

ain; (34)

where Δ 0 � Δ − g l∕2 and Δ � ωp − ωc is the detuning
between the pump frequency ωp and the cavity probe mode
frequency ωc. The last term in Eq. (34) has the mean value

haini �
ffiffiffiffiffiffiffiffi
P in

ℏωc

s
; (35)

where Pin is the input power, and the two-time correlation
function is

hain�t�ain�t 0�i � δ�t − t 0�: (36)

3. STABILITY

Equations (30)–(36) were used earlier to analyze full unhin-
dered rotation of the nanoparticle around the ring trap [10].
In that case the azimuthal lattice served as a weak probe of
the mechanical motion. In the present situation we consider
the opposite limit where the azimuthal lattice is strong enough
to trap the nanoparticle at a specific angular position. As we will

see below, for this physical situation to prevail, the scattering
torque needs to be weaker than the lattice torque, that is,

τ < 4lℏg l jasj2; (37)

where jasj2 is the steady state probe photon number in the
cavity.

A. Steady State Solutions for Torsional Motion

In the steady state the nanoparticle is localized in one of the
wells of the lattice, namely, near some ϕn � nπ

l , where
n � 0;…2l − 1, and the steady state angular momentum

Lz;s � 0; (38)

which solves Eq. (30). The remaining steady-state equations
give

sin�2lϕs� � −
τ

4lℏgl jasj2
; (39)

which is a relation valid in the regime indicated by Eq. (37) and
also implies

cos�2lϕs� � −

	
1 −

�
τ

4lℏgljasj2
�

2


1∕2

; (40)

where the minus sign has been chosen to be consistent with the
fact that in the absence of torque the equilibrium point is where
sin 2lϕs � 0, cos 2lϕs � −1 (see below). Finally, the steady
state cavity field is

as �
ffiffiffi
γ

p
ain

−i�Δ 0 − g l cos 2lϕs � � γ
2

: (41)

Below we will use the dimensionless steady state cavity
intensity,

I s � jasj2: (42)

B. Equation of Stability

Before we consider the full equation of stability, we first
consider the case τ � 0, which could be arranged physically
by the use of an external torque to cancel the effects of
trap photon scattering [10]. In this situation, ϕs � ϕn,
sin 2lϕs � 0, cos 2lϕs � −1, and

I s �
γ2

�Δ 0 � g l �2 �
�
γ
2

�
2
I I ; (43)

where the dimensionless input intensity is

I I �
jainj2
γ

: (44)

In the absence of net torque on the nanoparticle, therefore,
the cavity probe intensity is a single-valued function of the in-
put intensity, and the system is monostable. Physically, this cor-
responds to a situation in which the particle’s equilibrium
position corresponds to the minimum of a lattice well.

For τ ≠ 0, combining Eqs. (39)–(42), we obtain a nonlinear
equation for the steady state cavity probe intensity,

C4I 4s � C3I 3s � C2I 2s � C1I s � C0 � 0; (45)

where the coefficients are
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C0 �
�

τ

4lℏ

�
4

; (46)

C1 � 2γ2I I

�
τ

4lℏ

�
2

; (47)

C2 � γ4I2I �
�
τΔ 0

2lℏ

�
2

− 2

�
τ

4lℏ

�
2
	
Δ 02 � g2l �

�
γ

2

�
2


;

(48)

C3 � −2γ2I I

	
Δ 02 � g2l �

�
γ

2

�
2


; (49)

C4 �
�
γ

2

�
4

� �Δ 02 − g2l �2 �
γ2

2
�Δ 02 � g2l �: (50)

Before we present quantitative solutions to Eq. (45), we
make some qualitative remarks below.

C. Stability Analysis

We note that Eq. (45) is nonlinear in the intracavity probe
intensity I s, which indicates the possibility of multistability,
introduced by the presence of the torque τ. The degree of
Eq. (45) in the variable I s is four, in contrast to the usual
bistability equation of linear vibrational optomechanics, which
is of third order in the cavity intensity [19,20].

However, it can readily be shown that the number of physi-
cally acceptable (i.e., positive real-valued) solutions of Eq. (45)
for I s is at most two. This follows from the fact that the co-
efficients C0; C1, and C4 are always positive (for physical values
of the system parameters), C3 is always negative, while C2 can
be either positive or negative depending on the parameters. But
in all cases, the number of sign changes of successive coeffi-
cients in the polynomial of Eq. (45) is two. By Descartes’s rule
of signs, therefore, the number of positive real roots is either
two or zero. This is in contrast to the standard optomechanics
where the number of steady state cavity intensity values is either
one or three [19,20].

The appearance and stability behavior of the roots can be
understood by considering the interplay between the torques
due to trap scattering and the lattice. For simplicity we will
present our description in the regime where the optical damp-
ing is high, and the mechanical damping and fluctuations are
negligible. With these assumptions the cavity probe mode can
be eliminated adiabatically from Eq. (34), yielding

a � −
ffiffiffi
γ

p
ain

i�Δ 0 − gl cos 2lϕ� � γ
2

; (51)

which can be used in Eq. (31) to provide

_Lz ≅
4lℏγjainj2 sin 2lϕ

�Δ 0 − g l cos 2lϕ�2 �
�γ
2

�
2
� τ � τnet: (52)

The first term on the right-hand side represents the torque
due to the lattice and the second term the scattering torque.
These terms can be integrated to analytically yield the angular
potential energy,
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Fig. 2. Angular potential V 2;2�ϕ� [Eq. (54)] experienced by the
nanoparticle for various probe powers increasing from zero, (a) to
(e). To ensure visual clarity, parameters used were as follows:
τ � 2 Nm, Δ 0 � 0, gl � −1 Hz, γ � 1 Hz, l � l t � 2. ϕE and
ϕ� are points of unstable equilibrium, and ϕ− and ϕs are points of
stable equilibrium.
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V l;l t �ϕ� � −

Z
ϕ

0

�
4lℏγjainj2 sin 2lϕ

�Δ 0 − g l cos 2lϕ�2 �
�γ
2

�
2
� τ

�
dϕ (53)

� −τϕ − 4ℏjainj2
�
tan−1

	
2�g l cos 2lϕ − Δ 0�

γ




− tan−1
	
2�g l − Δ 0�

γ


�
: (54)

Figure 2 shows V 2;2�ϕ� for various values of probe power. In
Fig. 2(a), the probe power is zero; the particle sees only the
scattering torque and executes full rotations about the cavity
axis. In Fig. 2(b), some probe photons are present in the cavity,
but they cannot stop the full rotation, only modulate it at the
lattice frequency [10]. In Fig. 2(c), the probe intensity is at a
critical value where the net torque vanishes at points such as
ϕE . Clearly, such points of equilibrium are unstable. In
Fig. 2(d), the probe intensity is above threshold and pairs of
equilibrium points, ϕ�, appear. As can be seen, ϕ− is stable
and ϕ� is unstable. In Fig. 2(e), the probe intensity is so high
that the lattice torque dominates the scattering torque. In this
case it can be seen that the minima of the potential occur at
cos�4ϕs� � −1, that is, at ϕs � π

4
; 3π
4
; 5π
4
, and 7π∕4.

A more rigorous analysis, using the Jacobian of the system to
determine dynamical stability and without using the men-
tioned restrictions on optical and mechanical dissipation and
noise, yields essentially the same results and will not be
presented here.

Using realistic parameters and without using the adiabatic
approximation, we show the plot of I s as a function of
I I—obtained by solving Eq. (45)—in Fig. 3. As can be seen,
up until a critical input intensity, there are no equilibria. At this
intensity, the (degenerate) solution corresponding to ϕE
appears. Beyond this critical intensity, two distinct solutions
corresponding to ϕ� emerge. The upper (stable) branch cor-
responds to ϕ− in Fig. 2 since for a given torque (or equivalently
I I ), according to Eq. (39), the larger value of I s occurs for the
equilibrium point with smaller ϕs. The lower (unstable) branch
corresponds to ϕ�. In units relevant to the experiment, I I at

threshold and for a wavelength of 1064 nm corresponds to
about 1 mW of input power into the cavity.

4. DYNAMICS ABOUT THE STABLE POINT

In this section we examine the full numerical dynamics of the
nanoparticle about the stable equilibrium point ϕ− [see
Fig. 5(d)], which are shown in Figs. 4–6.

In Fig. 4 we consider the situation τ � 0. Figure 4(a) shows
the time behavior of the probe photon number as it achieves a
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Fig. 3. Stable (ϕ−) and unstable (ϕ�) solutions to the intracavity
intensity as a function of input intensity, obtained from Eq. (45).
Parameters used were τ � 10f N mm, m � 1.5 × 10−19 kg,
R � 2 mm, r � 150 nm, γm � 60 Hz, Δ 0 � 0, γ � 150 KHz,
g l � −25 mHz, l � l t � 2.
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Fig. 4. Full numerical dynamics of the optomechanical system:
(a) ja�t�j2, (b) cos 2lϕ�t� and sin 2lϕ�t�, (c) Lz�t�, (d) Arg�a�t��.
All panels were generated using τ � 0, l � 2. Other parameters used
were the same as in Fig. 3. Initial conditions were set as a�0� � 0,
Lz�0� � 0, cos�4ϕ��0� � −0.98, gl � −1 Hz, ain ≅ 1011 s−1∕2.
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steady state in the cavity. It can be seen that any sinusoidal
modulation of ja�t�j2 is negligible. In Fig. 4(b), the two quad-
ratures of harmonic motion are shown as functions of time.
The oscillation frequency of the sin 4ϕ�t� curve is 8.6 KHz.
That this is the mechanical frequency can be seen by noticing
that the amplitude of the sine curve is much smaller than one.
Therefore we can linearize sin 4ϕ ≅ 4ϕ in Eq. (31) and, ignor-
ing damping, extract the harmonic frequency of oscillation
ωm � �32ℏgl ja�t ≫ γ−1�j2∕I�1∕2, which yields 8.7 KHz,
quite close to that observed numerically. The cosine curve os-
cillates at 2ωm, which is to be expected, since to the lowest
nontrivial order it is quadratic in the angular displacement.
Figure 4(c) shows the harmonic variation of the angular mo-
mentum. Since from Eq. (31) we see that Lz is driven by the
sine term, it oscillates at ωm. Figure 4(d) shows that the phase of

the cavity field oscillates at 2ωm. This is also reasonable, as
Eq. (34) implies the phase of the probe field is driven by
the cosine quadrature. It follows that, in contrast to the stan-
dard optomechanical setup, the position noise spectrum of the
mechanical oscillator can be found by homodyning the cavity
output at twice the mechanical frequency [21].

In Fig. 5 we consider the case τ � 2f N mm rad. The
dynamics of the probe cavity intensity, as shown in Fig. 5(a),
is the same as in Fig. 4(a), as the probe power is the same in
both cases. In Fig. 5(b) the sine trace is displaced slightly lower
vertically as compared to Fig. 4(b). This reflects the shift in the
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Fig. 5. (a) ja�t�j2, (b) cos 2lϕ�t� and sin 2lϕ�t�, (c) Lz�t�,
(d) Arg�a�t��. All panels were generated using τ � 2f N mm.
Other parameters used were the same as in Fig. 4.
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Fig. 6. (a) ja�t�j2, (b) cos 2lϕ�t� and sin 2lϕ�t�, (c) Lz�t�,
(d) Arg�a�t��. All panels were generated using τ � 30f N mm.
Other parameters used were the same as in Fig. 4.
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nanoparticle equilibrium position caused by the torque τ; see
Eq. (39). The cosine trace, which has been scaled up by a factor
of 10 for visibility, now shows both frequencies ωm as well as
2ωm. This is because the presence of the torque now causes a
term linear in ϕ to appear in the expansion of cos 4ϕ in addi-
tion to the term quadratic in ϕ for small angular displacements.
Physically, this corresponds to the introduction of linear opto-
mechanical coupling in Fig. 5 as compared to Fig. 4, where
only quadratic coupling exists. In Fig. 5(c) the angular momen-
tum oscillates at ωm. In Fig. 5(d) the time evolution of the
phase of the cavity probe field shows both ωm and 2ωm
dependence.

In Fig. 6 we consider a larger torque τ � 30f N mm rad,
which causes a substantial linear optomechanical coupling.
The probe intensity is shown in Fig. 6(a). In Fig. 6(b), the sine
curve is shifted even further down compared to Fig. 5(b). The
cosine curve has a small component at 2ωm, but the major
frequency present is ωm. In Fig. 6(c), the angular momentum
oscillates at ωm. In Fig. 6(d), the cavity probe phase shows
oscillations mostly at ωm.

From the above analysis we conclude that the relative
strength of linear versus quadratic couplings can be detected
experimentally in the proposed system by homodyning the
output of the cavity.

5. CONCLUSIONS

In this paper we have explored the off-axis torsional optome-
chanics of a levitated nanoparticle confined in a cavity driven by
optical beams carrying OAM. We have shown that scattering
torque from the trapping beam creates an instability in the sys-
tem. We have also demonstrated that the dynamics around the
stable equilibrium allow the use of the optical torque for tuning
the linear optomechanical coupling in this system, and also a
way to detect the relative strengths of the two couplings by ho-
modyning the probe field exiting the cavity. To support our
calculations, we have derived a quantum master equation for
the system and used it to derive classical Langevin equations
on which our analysis is based. Our investigations are likely
to be of interest to researchers exploring quantum mechanics
using torsional optomechanics, and could be extended to
atomic systems such as have been recently proposed for
realizing time crystals [22].
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